
J. Fluid Mech. (2006), vol. 563, pp. 199–222. c© 2006 Cambridge University Press

doi:10.1017/S0022112006001170 Printed in the United Kingdom

199

Vortex–wave interaction in a rotating stratified
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In this paper we present ray-tracing results on the interaction of inertia–gravity
waves with the velocity field of a vortex in a rotating stratified fluid. We consider
rays that interact with a Rankine-type vortex with a Gaussian vertical distribution
of vertical vorticity. The rays are traced, solving the WKB equations in cylindrical
coordinates for vortices with different aspect ratios. The interactions are governed
by the value of FrR/λ where Fr is the vortex Froude number, R its radius, and λ
the incident wavelength. The Froude number is defined as Fr= Umax/(NR) with Umax

the maximum azimuthal velocity and N the buoyancy frequency. When FrR/λ> 1,
part of the incident wave field strongly decreases in wavelength while its energy
is trapped. The vortex aspect ratio, H/R, determines which part of this incident
wave field is trapped, and where its energy accumulates in the vortex. Increasing
values of FrR/λ are shown to be associated with a narrowing of the trapping
region and an increase of the energy amplification of trapped rays. In the inviscid
approximation, the infinite energy amplification predicted for unidirectional flows
is retrieved in the limit FrR/λ→ ∞. When viscous damping is taken into account,
the maximal amplification of the wave energy becomes a function of FrR/λ and a

Reynolds number, Rewave =
√

U 2
L + U 2

H/νk2, with UL and UH typical values of the
shear in, respectively, the radial and vertical directions; the kinematic viscosity is ν,
and the wavenumber k, for the incident waves. In a sequel paper, we compare WKB
simulations with experimental results.

1. Introduction
Vortex–wave interactions play an important role in many large-scale and meso-scale

geophysical flows. The transition from three- to quasi-two-dimensional turbulence
owing to background rotation, stratification and flow geometry in large-scale
geophysical flows involves the organization into large- and meso-scale vortices, while
waves are continuously generated by geostrophic adjustment processes. The associated
wave–vortex interactions are a subject of recent study.

Next to vortical modes, that evolve on an advection time scale R/U with U and
R, respectively, the horizontal velocity and vortex length scale, relatively fast internal
waves evolve on a time scale based on the buoyancy frequency N . Wave–vortex
interactions can be considered as a function of a horizontal Froude number Fr, which
compares these two different time scales. For a non-rotating fluid and in the limit of
very small Fr, Lelong & Riley (1991) have predicted weakly nonlinear interactions
between waves and vortical modes. Galmiche, Thual & Bonneton (2000) showed that
the mean oscillating flow produced during interacting internal gravity waves, may
lead to wave-breaking by retrograde interaction and generate a non-zero potential
vorticity field.
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Critical layers and wave-breaking in parallel shear flows have been explored exper-
imentally, numerically and theoretically over the past three decades in view of their
fundamental role in momentum transport and mixing properties (see e.g. Booker &
Bretherton 1967; Ivanov & Morozov 1974; Olbers 1980; Koop 1981; Badulin, Shrira &
Tsimring 1984; Badulin & Shrira 1993; and references in Staquet & Sommeria 2002).
The energy of the incident wave packet accumulates as its wavelength decreases to
zero. In critical layers of jets or parallel shear flows, waves are reflected, absorbed
or break, leading to instabilities and turbulence (see e.g. Dörnbrack 1998; Staquet &
Huerre 2002). Edwards & Staquet (2005) investigated the interaction of a wave packet
with a baroclinic jet, showing a succession of reflections within the jet. Presumably
because of their specific choice of initial conditions they, however, did not find
evidence of wave-breaking. The effects of nonlinearities for the interaction with a
critical layer have been addressed for a vertical shear (see Jones 1968; Acheson 1976;
van Duin & Kelder 1982) or a horizontal shear (see Öllers 2003). These studies show
that overreflection occurs only when the flow is intrinsically unstable for Kelvin–
Helmoltz and inertial instabilities, respectively. In this paper, we address the question
of what happens with inertia–gravity waves in a vortex, of which the shear flow is
curved and finite in space.

Interactions of externally generated waves with a vortex have been investigated
for a number of cases. In an experimental study related to the present investigation
(Moulin & Flór 2005), we have shown that wave-breaking in the periphery of a vortex
leads to a deposit of anti-cyclonic vorticity. Bühler & McIntyre (2003) have studied
the effect of surface waves on a singular vortex with outer potential flow in the limit
of a small Froude number, i.e. with fast phase speeds compared to a slow vortex
motion. They show that the vortex core is advected by horizontally refracted waves.
In the presence of standing waves, dipolar vortices in a pycnocline were found to
oscillate in translation velocity due to both the wave-induced stretching and squeezing
of vertical vortex tubes within the dipolar structure, and the continuous change in
the mutual distance of the vortices (see Flór, Fernando & Van Heijst 1994).

The interaction of planar waves with the velocity field of a monopolar vortex can
be characterized by the ratio of the phase speeds of the vortex and wave given by
R/Tv , and Λ/Tw , respectively, with Λ the wavelength, and Tv and Tw the vortex
and wave periods. When the phase speed of the wave is larger than the maximum
velocity in the vortex, Λ/Tw >R/Tv , no wave-breaking can be expected. In contrast,
when Λ/Tw <R/Tv the waves are constrained by the Doppler effect and either reflect,
break or are absorbed. These effects also depend on the curvature of the flow field
in the vortex, as becomes clear when introducing an interaction length l =ΛTv/Tw of
the wave with the vortex. The interaction is again small when l/R > 1, corresponding
to the first case, whereas the interaction is strong for values l/R < 1. In the present
paper, we focus on interactions of planar waves with an individual vortex for l/R < 1
and include effects of flow curvature.

Since we apply the WKB approach, we will briefly introduce its basic theory for
wave interactions with a parallel shear flow. The WKB theory applies mainly to
flows with low Rossby and Froude numbers. It assumes that the phase of the wave
evolves on time and space scales shorter than the scales associated with the changes
in amplitude. Local values of the wavenumber and the frequency of the wave can be
deduced from the spatial and temporal derivatives of the phase function. The energy
propagates along rays of which the trajectories are inferred from the local values of
the group velocity and the background flow. The time-dependence of the wave field
is given by its absolute frequency, ωabs , corresponding to the wave frequency before
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the interaction. During the interaction, this time-dependence is conserved, and the
intrinsic frequency of the wave, ωo, defined as its frequency in a referential moving
with the local mean flow velocity, U , is inferred from the Doppler shifting relationship

ωabs = ωo + k · U, (1.1)

where k is the local wavenumber. The wave number component parallel to the flow
is conserved according to WKB theory. The wave intrinsic frequency, ωo, of planar
incident waves depends, according to the Doppler relationship, only on the spatial
position r . The flow is divided into regions where waves can propagate |ωo| ∈ [f, N],
with f the Coriolis parameter and N the buoyancy frequency, or are arrested, |ωo| <f

or |ωo| >N . The limits of these regions are known as reflection or critical layers. The
WKB theory remains valid near reflection layers, whereas near critical layers the
energy tends to infinity, indicating the trapping of waves. Near critical layers, the
linear approximation becomes singular.

For waves in a stratified shear flow, Koop (1981) compared analytical solutions of
the WKB equations with experiments and showed that the intrinsic frequency goes
to N near a reflection layer, whereas it goes to 0 near a critical layer. Because of
viscous damping, wave-breaking could not be observed. Olbers (1980) considered a
geostrophic jet and showed that the components of the wave number parallel to the
iso-velocity surfaces are conserved. Depending on their propagation direction, the
waves are either trapped in a ‘valve’-like critical layer or escape. In the limit of a
purely horizontal shear flow, this critical layer merges with the layer ωo =0. Waves
propagating against the flow are trapped near a critical layer ωo = N , in agreement
with predictions by WKB theory, and break through a buoyancy-induced instability.
In a more general context, the trapping and reflection of the waves are still represented
by the WKB theory (e.g. Badulin & Shrira 1993).

In § 2, we derive the equations of the WKB approximation for axisymmetric
background flows in cylindrical coordinates, and apply them to a Rankine-type
vortex. Ray-tracing results for the inviscid interaction of inertia–gravity waves with
an incident planar wave field are presented in § 3. To estimate the effects of flow
curvature and viscous damping, the results obtained for a simplified flow-model are
discussed in § 4, and conclusions and perspectives are presented in § 5.

2. WKB theory for vortex-like flows
2.1. Governing equations

In this subsection we derive the WKB theory for waves in the velocity field of a
vortex. The Boussinesq equations for a flow in a rotating and linearly stratified fluid
of mean density ρo, buoyancy frequency No and Coriolis parameter f are written in
the form (

∂u
∂t

+ (u · ∇)u
)

= −f ez × u − ∇P

ρo

+
ρ

ρo

g, (2.1)

∇ · u = 0, (2.2)(
∂ρ

∂t
+ (u · ∇)ρ

)
− w

ρo

g
N2

o = 0, (2.3)

where u is the flow velocity field, w its vertical component, ρ and P the density
and pressure perturbations associated with the flow. No is derived from the vertical
distribution of density ρs(z) in the fluid at rest, No =

√
(−g/ρo)(∂ρs/∂z).
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We decompose the velocity field into a stationary vortex field and a wave field. The
vortex has azimuthal velocity U with perturbation pressure and density field ρv and
Pv , respectively; the wave field has velocity components ũ, ṽ and w̃ with density and
pressure perturbation ρ̃ and p̃. Introducing the perturbations ρ = ρv + ρ̃, u = ũ +U eθ

and p =Pv + p̃ in equation (2.3) yields two sets of equations, of which one represents
the vortex motion, and the other represents the wave motion.

The vortex velocity-field is prescribed by

−U 2

r
= f U − 1

ρo

∂Pv

∂r
, (2.4)

0 = − 1

ρo

∂Pv

∂z
− ρv

ρo

g. (2.5)

After linearization, the equations for the wave motion read

∂ũ

∂t
+

U

r

∂ũ

∂θ
=

(
f +

2U

r

)
ṽ − 1

ρo

∂p̃

∂r
, (2.6)

∂ṽ

∂t
+

U

r

∂ṽ

∂θ
= −

(
f +

U

r
+

∂U

∂r

)
ũ −

(
∂U

∂z

)
w̃ − 1

ρor

∂p̃

∂θ
, (2.7)

∂w̃

∂t
+

U

r

∂w̃

∂θ
= − 1

ρo

∂p̃

∂z
− ρ̃

ρo

g, (2.8)

∇ · ũ = 0, (2.9)

∂ρ̃

∂t
+

U

r

∂ρ̃

∂θ
=

(
ρo

g
N2

o

)
w̃ +

(
∂ρv

∂z

)
w̃ +

(
∂ρv

∂r

)
ũ. (2.10)

According to the WKB approximation, the terms that represent the vortex velocity
field on the right-hand side of equations (2.6)–(2.10) are neglected. The interaction
of the waves with the vortex velocity-field reduces then to a Doppler shift in wave
frequency, represented by the operators (U/r)(∂/∂θ). When replacing the absolute
frequency of the wave by its intrinsic frequency, i.e. in a referential frame moving
locally with the flow velocity, the eigenvalue problem for the wave frequency reduces
to that of a freely propagating wave.

Scaling with the Coriolis parameter f and the buoyancy frequency No shows that
in the limit of low vortex Rossby and Froude number, the vortex-related terms on
the right-hand side of equations (2.6)–(2.10) are negligible. In contrast, for large
values of the vortex Rossby number and Froude number, these right-hand side terms
become important, leading to possible inertial and/or Kelvin–Helmholtz instability;
the Rayleigh function (f + U/r + ∂U/∂r) (f + 2U/r) may become negative locally
whereas the Richardson number (∂U/∂z)2/N2

o may exhibit values smaller than 1/4.
For moderate vortex Rossby numbers (0.1 <Ro <O(1)), the vortex related terms

on the right-hand sides of (2.6)–(2.10) remain negligible in the vortex periphery.
However, near the vortex centre these terms are significant and the WKB theory
becomes doubtful. From the dispersion relation it can be shown that the forbidden
region for rays, defined below (§ 3), covers the vortex core. Therefore, trapped rays
almost never penetrate inside the vortex core, but propagate in the vortex periphery
where we can apply ray theory. This justifies the use of the WKB approximation to
investigate the interaction of rays with moderate vortices.

2.2. Basic equations of the ray theory

The WKB theory, or ray theory, is reviewed in many textbooks in a general context
(see e.g. Leblond & Mysak 1978; Lighthill 1978), and is based on the asymptotic
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expansion in a small-parameter defined by the wavelength and the typical length scale
of the background flow.

Here, we apply the WKB theory to a monochromatic wave field of which the
time-dependence is given by its absolute frequency, ωabs . The intrinsic frequency of
the wave, ωo, which is defined with respect to a referential moving with the local
mean flow velocity U , is inferred from the Doppler shifting relationship (1.1) and is
linked to the local components of the wavenumber kx , ky and kz by the dispersion
relation

ωo =

√
k2

hN
2 + k2

zf
2

k2
h + k2

z

. (2.11)

The wave field is described by the three components of the velocity ũ, ṽ, w̃, the
pressure p̃ and the buoyancy b̃ = − (g/ρo)ρ̃, where ρ̃ is the density perturbation.
These different components of the wave field fulfil the polarization relations

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ũ

ṽ

w̃

b̃

P̃

ρ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0kx + if ky

ω0ky − if kx

− ω2
0 − f 2

N2 − ω2
0

ω0kz

iN2 ω2
0 − f 2

N2 − ω2
0

kz

ω2
0 − f 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

exp i (k · r − ωabst + φ), (2.12)

where A and φ are, respectively, an amplification factor and a phase shift which evolve
on time and spatial scales larger than for the wave phase (k · r − ωabst) itself. Here, N

represents the buoyancy frequency corrected for the deflection of the isopycnals due
to the vortex velocity field and is defined for the present Rankine-type vortex in § 2.3.

The wave energy propagates along rays defined by the ray equations

dx
dt

= U + vg, (2.13)

where vg is the intrinsic group velocity of the wave, of which the components are
given by the formula

vgx =
N2 − ω2

o

ωok2
kx, vgy =

N2 − ω2
o

ωok2
ky, vgz = −ω2

0 − f 2

ω0k2
kz, (2.14)

where k is the norm of the wave vector k. Using the Doppler relationship, the
refraction equations become in Newtonian notation

dki

dt
= − N

ωo

(
ω2

o − f 2

N2 − f 2

)
∂N

∂xi

−
3∑

j=1

kj

∂Uj

∂xi

, (2.15)

representing the evolution of the wavenumber components along a ray.
Equation (2.13) shows that, according to WKB theory, the wave energy is advected

by the local fluid velocity U , and that the Doppler effect (1.1) is interpreted in (2.15)
as a distortion of the wavenumber vector by the variations in buoyancy frequency
and by the local background shear. Integration of the set of ordinary differential
equations (2.13) and (2.15) from an initial state, defined by a position vector ro and
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incident wave characteristics ko, gives the ray along which the wave energy propagates
as well as the evolution of the wave characteristics along this ray.

Another equation is required to predict the evolution of the wave amplitude along
the ray. This amplitude is proportional to A in equations (2.12). Bretherton (1966)
showed that the higher-order equations that drive the amplitude evolution in the
WKB approximation, could be simplified to:

∇ ·
[
(vg + U)

E

ωo

]
= 0, (2.16)

describing the energy evolution. The local density of energy, E, is defined as
E = 1/2(ũ2 + ṽ2 + w̃2 + b̃2/N2) where ũ, ṽ, w̃ and b̃ are the velocity and buoyancy
parts of the wave field, and is linked to the amplification factor A by the relation

E =

(
Aω0

kh

kz

k

)2

.

For a tube of rays, equation (2.16) represents the flux conservation of the
wave action, E/ωo, along the tube. When the tube-section area decreases, flux
conservation leads to an increase of the wave-action. Therefore, the wave-action
increases (decreases) when rays converge (diverge).

Generally, in studies on parallel shear flows based on the conservation of the
wave number component parallel to the background flow, the intrinsic frequency ωo

depends only on the spatial position; critical layers are well defined and are exactly
the same for all rays forming an initially parallel tube. When a wave approaches a
critical layer, the cross-sectional area of the ray tube goes to zero and the conservation
of wave-action flux, described by equation (2.16), leads to an infinite amplification of
the energy E. This explanation does, however, not hold for flows with curvature since
each ray approaches its own critical layer leading to a finite amplification of energy.

2.3. Ray propagation into a vortex velocity field

We consider an isolated Rankine vortex characterized by a core of constant cyclonic
vorticity of radius R, embedded in a ring of constant anticyclonic vorticity such that
the total circulation vanishes at radius L. In the vertical direction, we suppose a
Gaussian distribution of vertical vorticity with a vertical length scale H . We consider
stable vortices with L/R =2 (see Flierl 1988). The fluid is linearly stratified, has a
buoyancy frequency, No, and a rotation frequency, Ω , implying a Coriolis parameter
f = 2Ω . The strength of the vortex is determined by its maximum velocity Umax , so
that the azimuthal velocity field U reads

U (r, z) = Umaxexp(−(z/H )2)

⎧⎪⎪⎨
⎪⎪⎩

r

R
if 0 <r <R,

1

1 − (R/L)2

(
R

r
−

(
R

L

)2
r

R

)
if R <r <L.

(2.17)

The density field for this vortex can be deduced from the thermal-wind relation
obtained from (2.4)–(2.5),

g

ρo

∂ρv

∂r
= −

(
f +

2U

r

)
∂U

∂z
. (2.18)

The WKB theory applies well to the outer region which is in geostrophic balance, but
is a crude approximation in the core region of the vortex which is in cyclostrophic
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balance, i.e. where the second term on the right-hand side of (2.18) is large compared
to the first. As stated before, the forbidden region for rays covers the core region of
the vortex and rays almost never penetrate the vortex centre. Only rays that propagate
close to the vortex axis do not feel the relatively weak velocity there and traverse
vortex structure with almost no modification. Therefore, we do not consider these
rays and neglect the cyclostrophic term that is important in the vortex core in (2.18).
Then the density field ρv reads

ρ(r, z) =

∫ L

r

∂U

∂z

(
fρo

g

)
dr ′. (2.19)

The discrepancies with the exact density field prescribed by (2.18) are important only
near the vortex centre.

With equations (2.17) and (2.19) an analytical expression for the buoyancy frequency
field inside the vortex can be derived, which after scaling with background buoyancy
frequency No, becomes

N∗2 =
N2(r, z)

N2
o

= 1 +
f UmaxR

H 2N2
o

(1 − 2(z/H )2)exp
(
−

(
z/H

)2)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(

r

R

)2

+
2 ln(L/R)

1 − (R/L)2
if 0 < r < R,

2 ln(L/r) − 1 + (r/L)2

1 − (R/L)2
if R < r < L.

(2.20)

The velocity field of the vortex is completely described by (2.17) and (2.20). After
transformation into a cylindrical reference frame (see Appendix) and substitution
into the set of ray and refraction equations (2.13) and (2.15), the propagation of
inertia–gravity waves can be described in cylindrical coordinates. Scaling all lengths
with the vortex core radius R and time with No, we obtain a non-dimensional set of
equations:

dr

dt
=

N∗2 − ω2
o

ωok2
kr, (2.21)

dθ

dt
=

1

r

(
N∗2 − ω2

o

ωok2
kθ + FrU ∗

)
, (2.22)

dz

dt
= −ω2

o − (f/No)
2

ωok2
kz, (2.23)

dkr

dt
= −Fr

f

No

(
R

H

)2
ω2

o − (f/No)
2

ωo(N∗2 − ω2
o)

(
N∗ ∂N∗

∂r

)
− Frkθ

(
∂U ∗

∂r
− U ∗

r

)

+
kθ

r

N∗2 − ω2
o

ωok2
kθ , (2.24)

dkθ

dt
= −kθ

r

N∗2 − ω2
o

ωok2
kr, (2.25)

dkz

dt
= −Fr

f

No

(
R

H

)4
ω2

o − (f/No)
2

ωo

(
N∗2 − ω2

o

) (
N∗ ∂N∗

∂z

)
− Fr

(
R

H

)2

kθ

(
∂U ∗

∂z

)
. (2.26)
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Field f (r) for r < 1 f (r) for 1< r < L/R g(z)

U ∗ r
1

1 − (R/L)2

(
1

r
−

(
R

L

)2

r

)
exp(−(R/H )2z2)

∂U ∗

∂r
− U ∗

r
0 − 1

1 − (R/L)2

(
2

r

)
exp(−(R/H )2z2)

∂U ∗

∂z
r

1

1 − (R/L)2

(
1

r
−

(
R

L

)2

r

)
−2z exp(−(R/H )2z2)

N ∗ ∂N ∗

∂r
−r

1

1 − (R/L)2

(
−1

r
+

(
R

L

)2

r

) (
1 − 2

(
R

H

)2

z

)
exp(−(R/H )2z2)

N ∗ ∂N ∗

∂z
−r2 +

2ln(L/R)

1 − (R/L)2
1

1 − (R/L)2

(
2 ln

(
L

R

)
− 2 ln(r) −z

(
3 − 2

(
R

H

)2

z2

)

− 1 +

(
R

L

)2

r2

)
× exp(−(R/H )2z2)

Table 1. Non-dimensional analytical expressions for the different components of the cyclonic
vortex field. The functions f (r) and g(z) correspond, respectively, to the radial and vertical
parts of the field.

The variable Fr is the Froude number defined as above, Fr= Umax/NoR, whereas N∗

and U ∗ are the non-dimensionalized buoyancy frequency and velocity, respectively.
Both, N∗ and U ∗ are written as functions of f (r)g(z) of which the analytical
expressions for a cyclonic vortex with Umax > 0 are given in table 1. The intrinsic
frequency in the non-dimensional dispersion relation

ω2
o =

N∗2
(
k2

r + k2
θ

)
+ (f/No)

2k2
z

k2
, (2.27)

is a function of the components of the wave vector and the buoyancy frequency field,
while the non-dimensional form of the Doppler shifting relationship now reads

ωabs = ωo + Frkθr

(
U

r

)
, (2.28)

where for convenience the asterisks are dropped.
Equation (2.25) implies the conservation of kθr along a ray (see Appendix) so

that, with (2.28), ωo depends only on the spatial position (r, z). The shear-driven
terms in equations (2.24) and (2.26) are derivatives of the component U/r , i.e.
∂(U/r)/∂r = 1/r(∂U/∂r−U/r)). This component has the same meaning as the velocity
field U for a parallel shear flow in Cartesian coordinates. However, the rays of an
incident planar wave in a cylindrical frame of reference have different values of kθr ,
implying a different behaviour.

To consider the last term on the right-hand side in (2.24) in more detail, we derive the

evolution equation for the horizontal component of the wave vector, kh =
√

k2
r + k2

θ ,
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Owave

x

z

H

R

H

R

2L

y

z
(a) (b)

Owave

Figure 1. Sketch of the initial position of the incident parallel rays used for the WKB
simulations with respect to the vortex of which the vorticity amplitude is represented by grey
intensity. (a) The side view showing the position and relative size of the vortex and (b) the
backward view of the grid of size relative to the vortex. In the text the dimensions are scaled
with R. The central ray in the grid, located in Owave , propagates towards the centre of the
vortex. In (b), the vortex is in the background.

from (2.24) and (2.25),

dk2
h

dt
= −Fr

f

No

(
R

H

)2
kr

2

ω2
o − (f/No)

2

ωo

(
N2 − ω2

o

) (
N

∂N

∂r

)
− Fr

kθkr

2

(
∂U

∂r
− U

r

)
. (2.29)

We recognize in (2.29) the linear propagation of internal waves in a fluid at rest (i.e.
Fr = 0) for which kh remains constant. As a consequence, in a cylindrical coordinate
system where rkθ is conserved, kr must evolve to maintain kh constant. In the core
region of the vortex (r < 1), described by (2.17), U/r−∂U/∂r = 0, so that the evolution
of kh is only driven by the radial gradient of N .

To solve (2.21)–(2.26), we prescribe the incident planar wave as a superposition
of initially parallel rays with identical frequencies, ωabs , and wavenumber, k. The
dispersion relationship determines the different components of the wave vector. Only
rays which interact with the vortex velocity field are considered, so that the numerical
resolution can be carried out for a regular grid of rays of finite dimension. The position
of the grid of incident rays relative to the vortex flow is shown in figure 1, where the
centre of the grid, noted Owave, corresponds to the ray aiming at the centre of the
vortex. The horizontal and vertical steps were chosen such that the 10 000 incident
rays are equally spaced on the grid. For each ray, the WKB equations (2.21)–(2.26) are
solved, using a fourth-order Runge–Kutta algorithm applied to the five-component
vector (r, θ, z, kr , kz) with rkθ being conserved. The intrinsic frequency, ωo, is deduced
from the dispersion relationship (2.27), and the Doppler-shifting relationship (2.28) is
used to double-check the accuracy of the numerical scheme. In the WKB theory, the
two relationship are fulfilled, and the numerical solution must be accurate enough to
respect this constraint.

In order to detect the trapping of incident rays, the numerical integration should
be continued for a sufficiently long period of time. For a simulation with rays of
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absolute frequency ωabs and wavenumber k, we define the reference time, tref , as the
time it takes for the wave to propagate a horizontal distance equal to the vortex radial
extent, 2L/R, in the absence of a vortex. Simulations that lasted around 8tref were
long enough to distinguish rays trapped in the vortex velocity field from escaping
rays, and therefore this time limit is the one used in numerical simulations presented
below.

3. Numerical results for the inviscid propagation
In order to investigate the wave propagation, we have divided the vortex region

into three regions, with 0< r < 1 representing the core with positive vorticity, 1 < r < 2
representing the ring with negative vorticity, and r > 2 the exterior at rest. The waves
are emitted from the grid points in figure 1(b). The frequency of a wave and implicitly
its direction may change owing to the presence of the shear flow by the Doppler
effect as can be inferred from relation (2.28). This Doppler shift is the major physical
effect at work. The strength of the Doppler shift in (2.28) is measured by kFr, since
r(U/r) is around unity and kθ is proportional to the non-dimensional wavenumber
k. The length scale is prescribed by the vortex radius R, whereas the wavelength λ
can take any value, so that the non-dimensional wavenumber k = 2πR/λ belongs to
[−∞, +∞].

We distinguish waves propagating in the direction parallel to the azimuthal velocity
field of the vortex (i.e. kθ > 0, or ‘with the flow’) and waves propagating in the opposite
direction to this velocity field (i.e. kθ < 0, or ‘against the flow’). Rays propagating
against the flow (with the flow) experience an increase (decrease) in intrinsic frequency.
The intrinsic frequency range is delimited by the layers where ωo reaches values
equal to f/No or 1. The expression for these layers can be deduced from the
Doppler shift and the conservation of rkθ and are given by rokθo(U (r, z)/r) = 1
and rokθo(U (r, z)/r) = f/No, where ro and kθo are the initial values of r and kθ for the
ray.

3.1. Behaviour of rays and definition for the trapping of rays

When kFr � 1, only the intrinsic frequency ωo, and implicitly the orientation of the
rays are weakly modified. Increasing kFr to O(1) shows that some rays reflect and
strongly interact with the vortex. For still higher values of kFr, some rays remain
inside the vortex even for large times and exhibit a strong decrease in wavelength,
associated with the trapping along a critical layer. Since the vortex is confined in
space, these interacting rays escape eventually, in contrast to rays interacting with
infinite jets (see Olbers 1980). Therefore, we define the decrease in wavelength up to
one-tenth of the initial value as a criterion for trapping. This decrease in wavelength
is proportional to a decrease of the intrinsic group velocity implying partial trapping
of wave energy inside the vortex. The threshold value for the decrease in wavelength
is deduced from the evolution of the wavenumber spectra with time, and will be
justified at the end of this section.

Figure 2 shows the distribution of trapped rays plotted in the incident grid defined
in figure 1(b). Rays propagating against the flow, kθ < 0, are marked by grey circles
in figure 2. The rays denoted a–g differ from each other in initial height, whereas
a typical ray propagating along the flow, kθ > 0, is denoted h. Figure 3 shows a
three-dimensional view of the ray d , and illustrates how it wraps around the vortex
structure while being trapped. Note that wave breaking or viscous effects may prevent
this ray from eventually escaping the vortex shear flow. In figure 4, these rays are
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Figure 2. Distribution of rays in the grid in figure 1(b) that will be trapped in the vortex:
thick dots mark trapped rays. Grey circles labelled (a–h) indicate the locations of rays that
are plotted in figure 4 and are discussed in the text. For this simulation, the parameters are:
H/R =1.0, L/R = 2.0, f/No =0.1, Fr = 0.1, k = 31.0 and ωabs = 0.85. The numbers of nodes
on the regular grid are 74 and 134 in the horizontal and vertical directions, respectively,
corresponding to about 10 000 incident parallel rays.
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Figure 3. Three-dimensional view of the ray labelled d in figure 2. The grey volume is the
upper half of the forbidden region for this ray (see text).
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Figure 4. Typical behaviour of the rays labelled in figure 2, here plotted in the (r, z)-plane. The
vortex is represented in grey-colour, with the gradient representing the gradient in horizontal
velocity with z ∈ [−H/R,H/R]. Forbidden regions where ωo is outside the range [f/No, 1] (see
text) are delimited by bold lines. Rays a–h have been grouped in different figures, depending
on their behaviour (see text). The parameters of the simulation are the same as in figure 2.
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plotted in the (r, z)-plane; the gradient in the amplitude of the vortex velocity field is
displayed by the gradient in grey colour. For each ray, the boundary of the forbidden
region mentioned above is indicated by a solid line. This boundary is exactly the same
for rays a–g since they have the same value of rkθ .

For kθ < 0, rays propagating in the far field, illustrated by a and g in figure 4(a)
experience a weak shift in intrinsic frequency ωo, which remains close to ωabs . Conser-
vation of rkθ and very weak change of kh lead to a constant increase of the radial
component kr , from negative values towards positive values, explaining the presence
of turning points in figure 4(a). At these points, kr =0 and r is equal to the minimal
distance of the ray to the centre of the cylindrical coordinate system. In top and side
views, these rays would appear as very weakly curved lines, the wave energy being
slightly advected during propagation through the vortex region r <L/R.

The rays c, d , e and f illustrated in figure 4(b) propagate against the flow and
penetrate into the vortex. We consider each case separately. Ray c, after reflecting on
the layer ωo = N , penetrates inside the core region (r < 1). The radial wavenumber
stretching, proportional to U/r −∂U/∂r , is equal to zero by the choice of our velocity
field, so that this ray behaves as in a parallel flow with vertical shear and eventually
escapes. Rays d , e and f propagate relatively slowly, and are trapped in the zone
where ωo =N , close to the vertical, where the radial shear is intense. They propagate
very slowly in comparison with rays a and g, while their wavelength becomes smaller
than one-tenth of the initial value. Ray f misses the reflection layer and crosses the
mid-plane (z = 0), but propagates in the outer region with an orientation leading to a
fast increase of the radial and vertical wavenumber components. Ray b in figure 4(c)
first turns back towards to the layer ωo =N , where it subsequently reflects and
becomes trapped, similar to ray d . Only a small section of the incident wave field in
figure 2 shows this complicated behaviour.

Rays propagating with the flow (kθ > 0) and having a turning point located in the
outer region experience only a modest change in wavelength and escape from the
vortex. Only rays with low absolute values of kθ , such as ray h in figure 4(d), which
would propagate without interaction near the vortex centre, are able to penetrate
inside the core region r < 1. There, the gradient in U/r is only vertical so that the ray
propagation is very similar to that in a purely vertical shear flow: rays are gradually
trapped along the horizontal critical layer defined by ωo = f/No. Rays such as h in
figure 4(d) penetrate inside the vortex core region, experience a relatively effective
decrease in wavelength compared to waves that only cross the outer region (see
figure 2).

Figure 5(a) shows the spatial distribution of all rays near the vortex for kFr = 3.1, at
time t = 8tref . The rays plotted in the left-hand part of figure 5(a) slowed down during
the interaction, and were eventually trapped. Rays in the outer region (1< r < L/R)
that propagate against the flow (kθ < 0), are located in a region with strong radial
and vertical shear, so that their wavelength will keep on decreasing. Rays in the core
region, r < 1, also propagate against the flow, but escape the intense radial shear
region at r = 1, without a further decrease in wavelength. The lower-right part of
figure 5(a) shows rays which propagate with the flow (kθ > 0), corresponding to rays
such as h in figure 4(d). The corresponding zoom out in figure 5(b) shows that most
rays propagate to the lower-left part of the figure. The rays in the upper-right part
of the figure correspond to rays of type c in figure 4(b), and propagate upward.
They reflect on the layer ωo =N before escaping the vortex velocity field. The bold
vertical segment in figure 4 indicates where the rays would be located in the absence
of the vortex. Figure 6 represents a three-dimensional view of the final positions of
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Figure 5. (a) Ray positions in the (r, z)-plane for the simulation in figure 2 at t = 8tref , and
(b) a zoom out of the same plot. In (a), the dashed lines indicate the limits between the core,
r = 1, and the outer boundary of the vortex, r = L/R = 2. In (b), the bold vertical segment
indicates the position in the absence of a vortex.
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Figure 6. Three-dimensional view of the final position of rays, at t = 8tref , for the simulation
of figure 2.
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Figure 7. Evolution with time of the wavenumber distribution for rays in the simulation of
figure 2. k∗ is the ratio between the wavelength at time t and its initial value. The bold vertical
line indicates the distribution of the wavenumbers at the beginning of the simulation. Time
t =8tref is the distribution at the end of the simulation. The bold line on the right-hand side
indicates the location of rays of which the final wavelength is smaller than one-tenth of the
initial value, represented by bold dots in figure 2.

the rays, and shows that even rays that are not trapped, are strongly deflected by the
interaction. We can infer from the dispersion relationship, that the energy of escaping
waves still propagates along a cone-shaped surface (the axisymmetric equivalent of
the St Andrew’s cross of gravity waves in a fluid at rest, see Turner 1973), but the
initially planar wave structure is entirely deformed.

The temporal evolution in the wavenumber distribution of the interacting rays is
shown in figure 7. The asymmetric distribution around the initial value (log(k∗) = 0)
represents the waves that are affected by the shear and escape (see curve tc = 1.6tref in
figure 7). Some rays exhibit a decrease of their wavenumber (log(k∗) < 0 in the figure)
since for fixed values of kθ and ωabs , the dispersion relation gives different pairs of
(kr, kz), of which some have a final wavenumber lower than that of the incident ray.
These rays have a higher group velocity and appear in the lower-right part of figure
5(b). The trapped rays correspond to the wavenumbers which increase linearly with
time and eventually form a ‘packet’ of wavenumbers visible on the right part of figure
7 for t = 8 tref , illustrated by a bold line. The separation of this packet from the
wavenumbers of the escaping rays occurs around log(k∗) = 1. This corresponds to the
decrease in wavelength to one-tenth of the initial value that we used to define trapping.

3.2. Influence of vortex shape on wave propagation

In order to investigate the effect of the vortex characteristics on the trapping, the
vortex aspect-ratio H/L was varied for different values of N/f and Fr. Simulations
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Figure 8. Contours of the trapping section, σ , for vortices with different aspect ratios H/R:
(a) H/R = 0.1, (b) H/R = 1.0, (c) H/R =5.0 and constant parameters f/No =0.1, L/R = 2.0,
Fr = 0.1. Figures on the left-hand side are calculated by taking account of all rays. Figures in the
middle and on the right-hand side show contributions from rays propagating against the flow,
or along it, respectively. Thick lines are contours of σ = 0.05, 0.1, then with intervals of 0.1.

were carried out for values of k between 0.1 to 1000.0 and ωabs in the range [f/No, 1].
To estimate the impact of the vortex shape on the trapping, we define σvortex as the
area of the vortex seen by incident rays of frequency ωabs . For the vortex defined by
(2.7) with aspect ratio H/R, we take H as a typical vertical extent of the vortex. The
vortex area, σvortex , made non-dimensional by R is given by the radius L/R, the area
of the grid of rays, a rectangle of 2H/R by 2L/R, and the direction of the waves
between the limits ωabs = 1 and ωabs = f/No, respectively, and reads

σvortex

(
ωabs,

H

R
,
L

R

)
=

L

R

⎛
⎝4.0

H

R

√
1 − ω2

abs

1 − (f/No)2
+ π

L

R

√
ω2

abs − (f/No)2

N2 − (f/No)2

⎞
⎠ .

We define σ as the area of trapped rays divided by the vortex area σvortex . In figure 8,
contours of the trapping area σ , have been plotted as a function of kFr and ωabs for
vortices with different aspect ratios, while other non-dimensional parameters are kept
fixed. The different scenarios found for kθ < 0 and kθ > 0 and the vortex shape are
discussed below.

For flat vortices, rays propagating with the flow (ray h in figure 4d) are trapped by
the strong vertical shear ∂(U/r)/∂z (see figure 8a, H/R = 0.1), while rays propagating
against the flow escape (rays c − f in figure 4b). Only for short waves does the
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Figure 9. Trapped rays, plotted in the meridional (r, z)-plane for increasing value of k: (a)
k =10.0, (b) k = 31.0, (c) k = 100.0, (d) k = 310.0, (e) k = 1000.0. Other parameters are kept
fixed and are equal to: L/R = 2.0, H/R = 1.0, f/No =0.1, ωabs = 0.85 and Fr = 0.1.

curvature of the flow becomes negligible, and some rays propagating against the
flow are eventually trapped when approaching the frequency ωabs ≈ 0.2, as in a
geostrophic jet (see Olbers 1980). These rays are trapped near the edge of the vortex,
(z, r) = (0, L), where the horizontal shear is dominant and the critical-layer condition,
ωo = N , is met.

For tall vortices, H/R = 5.0, waves propagating with the flow reflect and escape,
while waves propagating against the flow are trapped along almost vertical critical
layers that are, as above, located near the reflection layer ωo = N (see figure 8c).
In contrast to flat vortices, even short waves (high kFr) propagating along the flow
escape after reflection in the region 1 <r < 2. Only smaller values of H/R = 1.0, allow
some rays that propagate along the flow to penetrate inside the core region, where
they can exhibit stretching in wavenumber (see figure 8b).

For decreasing wavelengths (increasing kFr) and rays propagating against the
flow, the trapping region gradually becomes closer to the outer part of the vortex
and increases in density, i.e. the final distance between two neighbour trapped rays
decreases (see figure 9). Conservation of the wave-action flux expressed by (2.16),
will then lead to an energy amplification which grows with kFr. In real flows, this
energy amplification is balanced by diffusive damping or nonlinearities. In an attempt
to compare quantitatively the opposing effects of trapping and viscous damping, we
consider the energy evolution for a single ray trapped in the outer part of the vortex,
adopting a simpler flow model.

4. Combined effects of curvature and viscosity for trapped rays
The rays that penetrate into the vortex and are subsequently trapped, like ray d in

figure 4(b), typically feel a baroclinic horizontal and vertical shear given by, respecti-
vely, UL =Umax/(L − R) and UH =Umax/H . The effect of the velocity field on the rays
is then locally the same as the effect of a constant shear, and leads to a linear decrease
of the wavelength with time. As the wavelength decreases, the viscous damping rate
increases accordingly and eventually overcomes the energy amplification.
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In order to investigate the effects of both curvature and viscosity on the energy
amplification of a ray trapped in the vortex, we will consider a simplified azimuthal
velocity field instead of (2.7), with the same shear intensity, but parallel iso-velocity
surfaces. This allows for an easier comparison with the results obtained by Olbers
(1980) for a geostrophic jet. This simplified velocity field reads

U (r, z) = Umax

⎧⎪⎨
⎪⎩

− 1

L − R
(r − L) − 1

H
z for

1

L − R
(L − r) +

1

H
z < 0,

0 for
1

L − R
(L − r) +

1

H
z > 0,

(4.1)

where Umax , R, L and H are the parameters for the vortex velocity field. In this flow,
the isopycnals are inclined owing to the vertical shear, but the derivatives of N are
equal to zero. This approach is justified since the buoyancy term in (2.21)–(2.26) is
negligible in comparison with the effect of the shear for a ray with large kFr that is
trapped in the periphery of the vortex.

Note that equations (4.1) represent a simplified approximation of the shear flow
of the vortex periphery (2.17) and that the divergence for r → 0 or (r, z) → ∞ is not
concerned. Rays remain close to their point of penetration in the (r, z) plane, i.e. in
the vortex periphery.

To study the energy amplification during the trapping, the WKB equations in the
cylindrical reference frame (2.21)–(2.26) are solved for a set of initially parallel rays dis-
tributed along a tube. The cross-section of this tube represents the wave action flux,
which is proportional to the energy. Under the inviscid assumption represented by
(2.16), the wave action is conserved and the tube has a constant cross-sectional area.

To calculate the energy evolution along the ray, and taking account of viscosity, we
use a modified version of the wave-action equation (2.16), given by (see Booker &
Bretherton 1967)

∇ ·
[(

vg + U
)

E

ωo

]
= −νk2 E

ωo

, (4.2)

where ν is the viscosity of the fluid and k is the norm of the wavenumber. In contrast to
the inviscid case, the wave action which is proportional to the cross-section of the ray
tube, decreases along the ray. The dissipation rate along a ray (right-hand side of (4.2))
is evaluated numerically from the volumes of the successive portions of the tube.

Figure 10 displays meridional and top views of a ray propagating against a
baroclinic flow with an initial incident angle α = 3π/4 with the azimuthal velocity.
The baroclinic shear is given by UL/UH = H/(L − R) = 4 and f/No = 0.1. As for ray
d in figure 4(b), the ray first reflects on a reflection layer where ωo = N (at z = − 0.35)
and is then trapped along a critical layer, similarly to the ray trapping in a baroclinic
geostrophic jet studied by Olbers (1980). Olbers (1980) showed that the rays in this
jet propagate in a wave guide of which the thickness, δ, is deduced from the Doppler

shifting relationship and reads δ = (No − f )/kθ

√
U 2

L + U 2
H . When divided by L, its

non-dimensional form is:

δ

L
=

(1 − f/No)√
(R/(L − R))2 + (R/H )2(kθ/k)

(
1

kFr

)
, (4.3)

where kθ/k depends only on ωabs and α. This expression shows how an increase of
kFr for a fixed configuration (L/R, wabs and α maintained constant) corresponds to
a decrease in wave-guide thickness relative to the horizontal extent of the vortex. The
jet studied by Olbers (1980) is recovered in the limit δ/L = 0, or equally kFr = ∞.
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Figure 10. (a) Ray propagating in front of a weakly baroclinic constant shear flow
(UL/UH =4) in the (r, z)-plane and (b) top view. ——, ray; – – –, limit of the non-zero velocity
field; · · ·, iso-velocity surfaces. Lengths are scaled with R and L/R = 1.3.

In figure 11(a), the inviscid evolution of the energy from the beginning of the inter-
action is plotted for different values of δ/L and for the Cartesian limit δ/L = 0. The
sharp peak observed in the curves δ/L corresponds to the reflection of waves on
the layer ωo = N , where the WKB approximation predicts an infinite amplification of
energy.

In the limit δ/L → 0, all the rays of the tube are trapped at the same critical
level, and the area of the tube cross-section tends to zero as time tends to infinity,
leading to an unlimited growth of the wave energy. For a finite value of the curvature
δ/L, each ray converges to its own critical level, and the cross-section of an initially
circular tube of rays takes an elliptical shape. In figure 11(a), the energy evolution
is plotted against time for different values of δ/L. The curves with δ/L > 0 tend to
a finite value of the energy with δ/L > 0. Accordingly, figure 12 displays the final
elliptical shape of the cross-sections of the ray-tube for different values of δ/L; the
cross-section tends to zero for δ/L → 0. Waves are trapped in the mean flow and the
wavelength decreases with time in parallel shear flow, but the energy reaches a finite
value. This narrowing of the section area of the tube of rays with the parameter δ/L

corresponds to the narrowing of the trapping region with increasing kFr observed in
WKB simulations for the complete vortex flow, as illustrated in figure 9. We consider
a thin ray tube which loses its initial circular shape within the vortex velocity field
and becomes elliptical. The ratio of the short axis of the elliptical cross-section to
the radius of the initial circular cross-section is proportional to δ/L. Therefore, we
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Figure 11. (a) Evolution of energy (logarithmic scale) along rays propagating in front of a
weakly baroclinic flow (UL/UH = 4), for different values of δ/L. ——, analytical solution for
δ/L =0; – – –, numerical solutions for δ/L = 0.54, 0.20, 0.07, 0.02. (b) Final energy amplification
as a function of the parameter (δ/L)−1. The stars are numerically calculated points for
δ/L =0.54, 0.20, 0.07, 0.02, and the bold line is the theorical scaling E/Eo ≈ (δ/L)−1 (see text).
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Figure 13. Maximum energy amplification as a function of the Rewave (logarithmic scales) for
different values of δ/L and rays propagating in front of a weakly baroclinic flow (UL/UH = 4).
——, prediction for δ/L = 0; – – –, predictions for δ/L =0.54, 0.20, 0.07, 0.02.

expect a scaling of the final energy amplification with (δ/L)−1. This is confirmed by
the numerical results plotted in figure 11(b).

Trapped waves still sustain infinite stretching of their wave vector, and because of
conservation of the energy density, E, growing amplitudes imply nonlinear effects or
wave-breaking. Therefore, flow curvature alone is not sufficient to prevent nonlinear
effects or wave-breaking, and will only delay their occurrence, but viscous effects
do constrain the wave amplitude (see Booker & Bretherton 1967). The viscous
damping rate increases with the decrease in wavelength and may balance the energy
amplification associated with the trapping process. For a stratified shear flow without
background rotation and waves propagating along the horizontal flow direction (see
Booker & Bretherton 1967), the maximum value of the energy amplification becomes
a function of the non-dimensional number UH/νk2

y , where UH is the vertical shear,
and ky is the component of the wave number parallel to the flow. For geostrophic
jets studied by Olbers (1980) and Staquet & Huerre (2002), the maximal value of
energy amplification depends also on the non-dimensional parameters No/f , and
width to height ratio L/H . Without aiming at a full description of the dependence
of this maximum energy amplification, we can follow Booker & Bretherton (1967)
and estimate the relative importance of the trapping effect compared to the viscous
damping, using a Reynolds number, Rewave, defined as

Rewave =
Umax√

(L − R)2 + H 2νk2
. (4.4)

For high Rewave, the final energy amplification is determined by the curvature
parameter δ/L and the amplification will follow the predictions of the inviscid model
for a long time. The interaction is expected to give rise to strong nonlinear effects.
For low Rewave, the viscous damping will quickly suppress the energy amplification
and all the incident wave energy will be dissipated by diffusive processes. In figure 13,
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the dependence of the maximum value of the energy amplification is plotted as a
function of Rewave for the ray in figure 11. This maximum value is deduced from energy
evolution curves of figure 11(a), where the reflection peak is replaced by a smooth
profile. The solid line corresponds to the zero-curvature limit δ/L → 0 (or kFr → ∞).
A minimal value of Rewave is then required for an amplification to occur. Dashed
lines correspond to different values of the curvature δ/L. The minimal value of Rewave

that is required for energy amplification to occur, depends weakly on the curvature
δ/L since viscous effects act on relatively small scales compared to the curvature. In
the limit of high Rewave, the maximum energy amplification decreases with δ/L.

5. Conclusions
We have investigated various interactions of inertia–gravity waves with an isolated

Rankine-type vortex. Numerical simulations based upon the WKB equations in
cylindrical coordinates have shown a very rich ensemble of possible ray paths
interacting with the axisymmetric shear flow of a vortex as is demonstrated by figure 3,
with trapping regions depending on kFr, H/R indicated in figures 2, 4 and 8, and
trapping efficiency in figure 7. The non-dimensional parameter kFr, which measures
the strength of the interaction, can be written as kFr = Fr(2πR/λ) = 2πU/(Nλ) (with
λ the incident wave-length) and represents the ratio between the wave phase-speed
and the vortex speed.

For a relatively weak vortex, Fr(R/λ) � 1, rays propagate through the vortex
velocity field and are refracted. In this case, the vortex may still experience the recoil
force, proposed by Bühler & McIntyre (2003). The impact on the vortex kinematics
is beyond the scope of the present paper and will be considered elsewhere.

For a relatively strong vortex, i.e. Fr(R/λ) > 1, part of the incident wave field is found
to decrease in wavelength while its energy is eventually trapped. The localizations
of these trapped rays in the vortex field depend on the vortex aspect ratio H/R.
The density of the trapped rays in a meridional cross-section increases with FrR/λ,
associated with a narrowing of the trapping region. This narrowing is interpreted
as a decrease of the curvature parameter δ/L, where δ is the thickness of the wave
guide predicted by Olbers (1980) for a unidirectional flow. Finite values of δ/L lead
to finite energy amplification in the inviscid approximation, the infinite amplification
predicted for unidirectional flows being reached in the limit δ/L → 0. When viscous
effects are taken into account, the efficiency of the energy amplification driven by the
trapping process becomes also a function of a wave Reynolds number, Rewave.

For tall vortices with H/R 
 1, the waves propagating against the vortex velocity
field are trapped in the periphery of the vortex in a vertical and cylindrically shaped
region that is approximately delimited by iso-surfaces of U/r and symmetric with
respect to the horizontal mid-plane. In this region, waves exhibit high values of
intrinsic frequency ωo, and breaking may occur through instabilities similar to the
wave-breaking in barotropic jets studied by Staquet & Huerre (2002). For flat vortices
with H/R < 1, waves propagating along the vortex flow are trapped in a region of
which the shape is, in approximation, still delimited by iso-surfaces of U/r , but which
extends deeply inside the core of the vortex, where U/r is roughly r-independent
because of the Gaussian profile in azimuthal velocity z. The symmetry about the
mid-plane z = 0 is broken and waves propagating downwards (upwards) are trapped
in the upper (lower) half-plane. These trapped waves exhibit low values of intrinsic
frequency ωo, and may break through the instability of near-inertia gravity waves.

Finally, we note that the use of the WKB approximation is questionable for rays that
cross the middle plane z = 0 inside the vortex core, i.e. weakly interacting rays, where



Vortex–wave interaction in a rotating stratified fluid 221

the right-hand side of (2.6)–(2.10) cannot be neglected. There, the vortex velocity field
may modify the dispersion relationship and enhance a – with Ro-number increasing –
asymmetry in the interaction of waves with anti-cyclonic and cyclonic vortices. This
is left open for further work.

The authors gratefully acknowledge financial support from contracts ACI-CATNAT
2001-83 and ACI-PCN-2002 which made this research possible.

Appendix. WKB equations in a cylindrical coordinate system
To solve the ray and refraction equations (2.13) and (2.15) for a vortex flow, it

is more convenient to write them in a cylindrical reference frame (0, er , eθ , ez). We
consider an axisymmetric vortex described by an azimuthal velocity field Uθ (r, z) and
a buoyancy frequency field N(r, z), and components of the wave-vector noted kr , kθ ,
kz. In the cylindrical reference frame, it is straightforward to show that the set of ray
equations (2.13) reads

dr

dt
= vgr =

N2 − ω2
o

ωok2
kr,

dθ

dt
=

vgθ + U

r
=

1

r

(
N2 − ω2

o

ωok2
kθ + U

)
, (A 1), (A 2)

dz

dt
= vgz = −ω2

0 − f 2

ω0k2
kz, (A 3)

where vgr , vgθ and vgz are the components of the intrinsic group velocity in the
cylindrical coordinates system, deduced from formula (2.14), after changing (x, y)
into (r, θ).

The refraction equation (2.15) determines the evolution of the wave-vector
components along a ray described by (A 1)–(A 3). Since k = kr er + kθ eθ + kzez,
der/dt = dθ/dteθ and deθ/dt = −dθ/dter , the left-hand side of (2.15) reads

dk
dt

=

(
dkr

dt
+ kr

dθ

dt

)
er +

(
dkθ

dt
− kθ

dθ

dt

)
eθ +

(
dkz

dt

)
ez. (A 4)

The first term on the right-hand side is a gradient operator, easily transformed
into a cylindrical coordinate system. The second term on the right-hand side is an
operator that will be denoted Γ ,

Γ =

(
− kx

∂Ux

∂x
− ky

∂Uy

∂x

)
ex +

(
− kx

∂Ux

∂y
− ky

∂Uy

∂y

)
ey +

(
− kx

∂Ux

∂z
− ky

∂Uy

∂z

)
ez,

(A 5)

where Ux and Uy are the Cartesian components of the azimuthal velocity field
Uθ . Partial derivatives of these Cartesian components can be expressed as linear
combinations of the partial derivatives of the azimuthal velocity field, ∂Uθ/∂r and
∂Uθ/∂z. Also ex and ey are easily transformed into er and eθ , so that in cylindrical
coordinates Γ reads

Γ =

(
−kθ

∂U

∂r

)
er +

(
−kr

U

r

)
eθ +

(
−kθ

∂U

∂z

)
ez. (A 6)

Using (A 4) and (A 6), the projection of the refraction equation (2.15) on the
different components of the cylindrical coordinate system yields

dkr

dt
= +kθ

vgθ + U

r
− N

ω0

(
ω2

0 − f 2

N2 − f 2

)
∂N

∂r
− kθ

∂U

∂r
, (A 7)

dkθ

dt
= −kr

vgθ

r
,

dkz

dt
= − N

ω0

(
ω2

0 − f 2

N2 − f 2

)
∂N

∂z
− kθ

∂U

∂z
. (A 8), (A 9)
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Note in (A 1)–(A 2) that vgr/vgθ = kr/kθ , so that equation (A 8) becomes
d ln(rkθ )/dt = 0, leading to conservation of rkθ along a ray. Therefore, the system
of six equations (A 1)–(A 3) and (A 7)–(A 9) can be solved by considering only five
components.
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